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Abstract— This article presents a new extension of the Green’s function method in computational
mechanics. An iterative procedure is developed for analyzing the contact interaction in a system of
closely-spaced parallel thin plates, possibly situated just above a Winkler foundation. The plates
have uniform thicknesses and are composed of isotropic homogeneous elastic materials. Frictionless
contact is also assumed. According to the classification proposed by Dundurs and Stippes (1970),
the advancing contact has been discussed. The formulation of the problem brings a combination of
two types of nonlinearities of different origins. The geometric nonlinearity resulting from relatively
large deflections of the plates is accompanied by a nonlinearity which is due to the fact that the
boundaries between contact and non-contact zones for each pair of plates are initially unknown.
Linear problems appearing within each iteration are attacked by a version of the Green’s function
method. The technique utilizes the analytically constructed Green’s functions and matrices for the
biharmonic equation and Lame’s system of the plane problem in the theory of elasticity. Contact
conditions for each plate in the system are treated by implementing penalty functions. Numerical
results are encouraging, and an extension of this study to more complicated formulations is currently
under way.

INTRODUCTION

A number of analytical methods based on Green’s functions have originated from Dnie-
propetrovsk State University, Ukraine, within the past two decades. Special techniques
for constructing Green’s functions and matrices for boundary value problems in partial
differential equations and systems of the elliptic type have been presented by Melnikov
(1977a) and developed in a series of works by Dolgova and Melnikov (1978, 1989);
Davydov et al. (1978); and Melnikov (1981, 1991). In addition, a variety of extremely
complex problems in applied mechanics have already been attacked by the Green’s function
method. They include the following : heat conduction (Melnikov, 1970, 1976, 1977a, 1982 ;
Melnikov and Dolgova, 1976) ; elastic torsion (Melnikov, 1977a, 1982) ; the plane problem
in the theory of elasticity (Melnikov, 1977a,b, 1982 ; Dolgova and Melnikov, 1978, 1989;
Koshnarjova and Melnikov, 1991a.b; Melnikov and Koshnarjova, 1994) ; linear and geo-
metrically nonlinear problems in the theory of plates and shells (Melnikov and Tsadikova,
1978 ; Melnikov and Bajrak, 1980; Melnikov, 1982; Melnikov and Voloshko, 1988;
Shubenko, 1990; Melnikov and Shubenko, 1993); contact mechanics with initially unknown
contact zones (Koshnarjova and Melnikov, 1991a.b; Koshnarjova er al., 1987) ; and shape
optimization in the theory of elasticity (Melnikov, 1982 ; Melnikov and Titarenko, 1992,
1993). Some theoretical and computational aspects of the Green’s function method have
been studied by Melnikov (1970, 1981, 1982, 1985, 1991) and Koshnarjova and Melnikov
(1986, 1991b).

The present study is a continuation of this extensive list of works based on the Green’s
function method. Herein, the method is extended to a new class of boundary value problems
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of applied mechanics. An iterative procedure has been developed to compute the charac-
teristics of the elastic equilibrium of a system of parallel thin rectangular plates located just
above a Winkler foundation. The analysis is executed within the framework of a geo-
metrically nonlinear (Karman, 1910) formulation of the problem. Each single iteration
utilizes the appropriate Green’s function for the biharmonic equation and Green’s matrix
for Lame’s system of the displacement formulation of the plane problem in the theory of
elasticity. The technique proposed by Melnikov (1977a) is used to analytically construct
the Green’s functions and matrices needed. Contact conditions for the deflection function
for each plate are treated by the penalty functions method. This approach to the problem
provides a fast and stable convergence of the iterative process, resulting in a final solution
that is acceptably accurate.

Starting from the early 1930s, considerable effort has been put forth in the investigation
of the contact problems in the theory of plates. In the earlier studies by Girkmann (1931),
and Hofmann (1938), a class of problems is discussed involving circular plates, portions of
which are constrained from deflection by the presence of an absolutely rigid plane surface
parallel to the middle plane of the plate. These studies have formulated the contact problems
within the scope of the classical Poisson—Kirchhoff plate theory. Later it was shown that,
as far as contact problems are concerned, the classical plate theory cannot adequately
describe the stress—strain state of the contacting portions of plates. This is especially true
either if the plate is interacting with an absolutely rigid constraining surface, or if the plates
are in partial contact. Eliminating the aforementioned disadvantage, Naghdi and Rowley
(1953), Frederick (1956) and Essenburg (1962) have stated problems of the class mentioned
above within the scope of the Reissner plate theory which accounts for the effect of the
transverse normal stress and transverse shear deformation. A variety of other formulations
of contact problems in the theory of plates and shells have recently been considered. (See,
for instance, Weitsman, 1969 ; Grigolyuk and Tolkachev, 1980; Dampsey es al., 1984 ;
Ascione and Olivito, 1985 ; Rajapakse and Salvadurai, 1986.)

Two points clearly accentuate the novelty in the present work. First, this study broadens
the range of applications of the Green’s function method in computational mechanics.
Secondly, the contact interaction of the system of parallel plates has, for the first time, been
considered within the scope of the geometrically nonlinear Karman’s formulation.

PROBLEM FORMULATION. THE ITERATIVE PROCEDURE

Consider a system of N parallel thin elastic plates, enumerated upward from the
bottom, occupying a region © bounded with a piece-wise smooth contour T', as shown in
Fig. 1. Let a transverse loading ¢ (x, y) be applied to the N th plate. Set the lowest of the
plates (plate 1) just above a Winkler foundation. Assume that each plate has a uniform
thickness #,(n = 1,..., N), and is composed of a homogeneous isotropic material whose
elastic modulus and Poisson ratio are E, and v, respectively. Denote with §, the initial
distance between the middle planes of the (n—1)th and nth plates (n = 2,...,N), with J,
denoting the initial distance between the bottom face of the lowest plate and the foundation.
In addition, assume a frictionless contact of the plates in the system. Assume also that the
values of the deflections of each plate in the system are commensurate with its thickness.
Suppose that the equilibrium state of the nth plate can be adequately described by the
displacement formulation proposed by Karman (1910):

Dn 'Vzvzwn = qn+S(un: Uy, W,,),
LU,)=P(w,). n=1.. N, (0

where D, is the bending rigidity of the sth plate, w, = w,(x, y) is the deflection function of
the nth plate, ¢, = g.(x,») represents a transverse loading applied to this plate as a result
of its contact interaction with the (n— 1)th and (n+ 1)th plates, U, is a vector of in-plane
displacements of the nth plate, whose components are u, and v,. The nonlinear operator
S (u, v, w) is given by
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Fig. 1. The configuration of the plates and operative coordinate system.

S (u,v, w) = (ER/(1—v?)) - {[0u/ox+1/2" (@w[éx)* +v(Bv/dy + 12+ (Ow[dy)*)] - &*w]ox®

+ [v(Ou/0x 4+ 1/2+ (Ow[0x)?) + Sv/dy + 12 - (Bw/]ey)?] - 02 w]dy?

+ (1 —v) - (Bu/dy+ 0v/dx + Ow]ox * w[dy) * B> w]dxdy}.

L[U,} is Lame’s operator of the plane problem in the theory of elasticity, while P (w)
represents a nonlinear vector operator whose components P,(w) and P,(w) are expressed

as follows:

P (w) = —20w/0x* (0°w/ox? + (1 —v)*w/dy?) — (1 +v)Ow/dy - 0*w/dx By,

Py(w) = —20w/dy - (*w[6y* + (1 —v)3*w/0x*) — (1 4+ v)ow/dx - 0 w/dx By.

Boundary conditions on I' for each plate in the system are specified in the form

Bi(w,) =0, Bi(w,) =0, (x,»)el @)

Cltnv) =0, Ciur) =0, (x.p)el. 3)
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These equations are a generalization of the most frequently encountered boundary con-
ditions (simply supported, clamped, or free edge). In addition, the deflection function
wa(x, y) is assumed to satisfy the linearized contact conditions written in the form

W (X, ) —w,_,(x,»)—8,<0, (n=2,...,N) 4)

As shown by Koltunov et al. (1983), the conditions above can be considered as the first
asymptotic approximation to the corresponding nonlinear conditions.

Hence, the geometrically nonlinear bending of the system of N parallel plates is
described by the system of equations [eqn (1)] along with the boundary and contact
conditions in eqns (2)—(5). As we have already mentioned, this formulation implies two
different types of nonlinearities. Before we treat the formulation in full terms, let us
concentrate on the nonlinearity which is due to the fact that the boundary between contact
and noncontact zones is initially unknown. In doing that, we first restrict our consideration
to a system of biharmonic equations:

D, -V'V’w,—q,=0, (n=1,...,N), 6)

subject to the boundary conditions in eqn (2) along with the contact conditions in eqns (4)
and (5). To analyze the problem, we introduce Sobolev’s spaces H,, = W3(Q) of functions
w,(x,y) which are summable over Q along with their squares and second-order partial
derivatives. Construct a direct product H; = H,,® H,;® ... ® Hy, anddefineaset T, = H,

T, ={W={w,w,,...,wy}eH,:
Wi (X, 1) =Wy 1 (x,3) =0, <0, V(x,y)eQ, (n=2,....N),
wi(x, ) —0,(x,7) €0, V(x,»)eQ,
Biw) laner =0, BiW) lwyer =0, (n=1,...,N)} M
of kinematically permissible deflections, including the set of the deflections w,(x,y),
(n=1,...,N) satisfying conditions in eqns (2), (4) and (5). As shown by Duvant and

Lions (1972), and later by Panagiotopoulos (1985), a solution of the problem in eqns (2)
and (4)—(6) should also satisfy the variational inequality given by

Q\(W,W*—W) =L (W*—W), YW*eT,, (8)

where Q,(W, W*) and L,(W*) are quadratic and linear forms, respectively, defined by

N
NUASEDY D,,“ [02w,/0x? « 2 wHOx? + 0% w,[y? « P wH Dy 4v,* (8*w,/0x?
Q

n=1

X O*wXoy* + 02w, [0y? - 0P wHox*)+2(1 —v,) - *w,[éx Oy - O*w¥ox Oy]dQ,  (9)
L (W% = H g+ wt dQ. (10)
Q

Notice that the variational inequality in eqn (8) is not quite appropriate for directly
computing the solution of the problem under consideration. It appears in practice, however
(Glowinski er al., 1976), that its equivalent formulation, given by
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Jnf {J(W*) = 0.50,(W, W*)— L (W*)}, 1n
& ]

provides a more convenient way for computing. Vasilyev (1981) has analyzed in detail a
variety of methods that have been developed for the solution of extremal problems of the
type in eqn (11). In this study, we use the penalty functions technique to reduce the problem
in eqn (11) to a certain nonlinear boundary value problem.

To describe the computational algorithm based on the method of penalty functions,
we introduce a perturbated functional J,(W*) as follows:

N

J,(W*) = J(W*)+0.5[ 3 JJ B,(wkwiE ) (wr—wik_ | —4,)* dQ
n Q

=2

+H 7 (wh) - (Wi —d,)? dﬂ], (12)
Q

defined over a set TF given by

T

B’l' (W,,) |(x,y)e r

—_%

={W={w,w,,....wy}eH:
=0, BiWo)lwper=0, n=1,...,N}. (13)

Functions f§, and y, in eqn (12) are determined by

ﬂ ( ) 07 Wp— W, _571 < 05 (14)
Wy Wy =
! l {81_2) W,—H/,,_l'—én>0;
( ) {Oa W1—51 SO, (15)
7p(w1) =
P &%, w,—9d, >0.

Denote by W?(x,y) a vector-function providing the minimum of the perturbated
functional J, determined by eqn (12), and therefore representing an approximate solution
of the problem in eqn (11). Then inequalities

wl—wf —6,>0, n=2,....,N (16)

dealing with the components in W?”(x, y) determine the shape of the contact zone for the
(n—1)th and nth plates, while an inequality of the form

wi—38, >0 (17)

determines a contact zone for the lowest plate and the foundation.

Vasilyev (1981) provides a detailed discussion on convergence for our application of
the method of penalty functions. In particular, it has been shown that as & — 0 and
&, — 0, the approximate solution W? converges weakly in H, to the exact solution W
of the problem in egn (11).

We know that a system of the Euler’s equations matching the functional (Lagrangian)
in eqn (12) can be written in the form:

Dl 'Vzvzw)ll’ _Fl (Wlfawlé) = Oa (18)

Dn.Vzvzw,f_Fﬂ(wﬁ—lv"Vgulvrﬂfl):0: n:27"'>N_1> (]9)
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Dy V?ViWh —q—Fy(Wh_1,wh) =0, (20)
where we use the following notation

Fy(wy,wy) = B,(wi,wy) s (Wy —w; —0,) _"/p(Wl) (Wi —0dy),

El(wn— 1s Was Wn+l) = ﬁp(wn+1a wn) : (wn-%—l _wn_6n+l)
Mﬁp(wnawnfl)'(wvn—'wnAl_5n)7 n=2’-">N_17
Fywy_1,wy) = —Bp(Wys wy_1) (Wy— Wy —0y).

Thus, the approximate solution W” of the problem in eqn (11) is supposed to satisfy
the system of nonlinear equations in eqns (18)-(20) along with the boundary conditions in
eqn (2). Notice the importance of finding the values of ¢, and &, which provide a sufficiently
accurate approximate solution W?. A priori estimation made by Glowinski et al. (1976)
indicates that the value of max {g, &} should be minimized to give us the most accurate
result possible. However, small values of ¢, and &, cause excessive nonlinearity in the
problem. To overcome this predicament, we reformulate the conditions in eqns (4) and (5)
as follows

wf—wl_ | —0,<0,+0, '(?y?gxglw,’,’[, n=2,...,N—1, (21)
wl—6, < o,+80,- max |wf|, (22)
(x.y)eQ

where ¢, and 8, are permissible values of absolute and relative errors, respectively.

Notice that the differential equation [eqn (18)] could be applied to the case in which
the bottom surface of the lowest plate interacts with an elastic foundation whose Winkler
coefficient is ¢5 2. Therefore, if the system of parallel plates is situated just above a Winkler
foundation, then the quantity &5 ? in eqn (15) must be replaced with the actual value of the
Winkler coefficient.

GREEN’S FUNCTION APPROACH

To compute a numerical solution to the nonlinear boundary value problem in eqns (2)
and (18)-(20), we implement an iterative scheme that is specially adapted to the cor-
responding Green’s functions for the biharmonic equation. According to that scheme, the
approximate value w’(x, y) of the defiection function w,(x, y), (n = 1,..., N) for each plate
in the system is considered as a limit of the functional sequence {(W%(x,¥))},
(k=0,1,2,...) arising from a system of linear boundary value problems as written :

D, ‘VZVZ(Wf)kH =({1—~1.1) D 'VZVZ(Wf)k+Tk+1 Fi (WD (W5)e), (23)
D, V*V?(wP =(1— +D, V2V (wr
n (W,, )k+1 ( Tk*l) n (Wn)k
+Tk+l 'Fn((wrf—l)ks (Wf)ka(w’r€+l)k), n=2,...,N_1, (24)
D, -V*V? WRks1 = (1 —=Tpy 1) D,V*V? Wk +Terr " [g+ Fa(Wi e W)L (25)
B [(Wﬁ)kﬂ]hx,ymr =0, Bg[(wﬁ)k+l]|(x,y)er =0, n=1,...,N. (26)

In the formulation above, the subscript k indicates the current iteration number. The
parameter t,,, could be varied with k, allowing us to properly manage the rate of con-
vergence of the iterative process. In the next section of this paper, we analyze the con-
vergence in detail.
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The iterative process in eqns (23)-(26) is called (Samarski and Gulin, 1989) the non-
stationary double-layered iterative scheme. Clearly, the particular case associated with
74,1 = | represents the simplest version of the iteration method (successive approxi-
mations). Initial approximations (w?), for the scheme in eqns (23)—(26) can be taken, for
instance, as [w?(x,1)]), = 0,(n = 1,..., N), unless a better suggestion is available.

We will apply the Green’s function method to the linear boundary value problems
formulated in eqns (23)—(26). The advantage in this method over other techniques, such as
the finite element or finite difference methods, is its ability to compute all of the important
characteristics of the stress—strain state with an equal level of accuracy. This superiority
arises from the fact that, in developing our algorithm, we avoid any procedures of numerical
differentiation. Indeed, the Green’s function representation enables us to do all of the
differentiation analytically. The only numerical procedures that are employed are those
used to approximate integrals of the form in eqns (27) and (28).

To determine each single approximation {w?(x, »)],, to the solution of the nonlinear
problem in eqns (2) and (18)—(20), in compliance with the formulation in eqns (23)—-(26),
it is necessary to first evaluate the right-hand terms in eqns (23)—(25). These terms are
obtained by applying the right-hand side operators in eqn (23)-(25) to the preceding
approximation [w?(x,y)],. Consequently, convergence of the iterative process critically
depends on the accuracy of the numerical evaluations within each step.

Let Gg(x, y;&,{) represent the Green’s function of the biharmonic equation for the
region Q, with the boundary conditions of the form in eqn (2) prescribed along its contour
. Then the solution to the nonhomogeneous equation V*V? w(x, y) = — F(x, y) satisfying
these conditions is expressible in terms of the integral

w(x,y) = ” Gplx,y; &0 F(E,0)dQ(L, D). @7

Hence, to successfully run each single loop in the iterative process defined by eqns (23)~
(26), it is necessary to overcome all computational difficulties arising from the evaluation of
the proper as well as improper integrals written in the form

H Ky(x,7:¢,0) - Rp(S, ) dQ(E, D). (28)

The kernel function Kg(x,y;&,() in this integral results from the effect of the right-hand
side operators in egns (23)—(25) on the Green’s function Gg(x, v ;&, (), while the factor Rz(¢,
{) in the integrand of eqn (28) is obtained by recomputing the integrals of the form in egn
(28).

We now describe a procedure for approximating the integrals in eqns (27) and (28)
for the rectangular region Q (0 < x < a, 0 < y < b). For this purpose, we partition the
region Q into a set of elementary rectangles Q,,, (im=1,..., M)

M

Q: UIQm» sz{(x’,V)€R23 xrlngx

m=

N
=
I

~
5 e
N
<
N
~
s

We then use the following cubature formula

2 2
X
1

M m [V
W},(X, )’) = Zl F(xma ym) . J‘ fl GE(xay N é’ {) dé dC’ (29)

'Ym 4 7m

where
X = 0.5(x,+x3), ¥ =0.505+ym)

Let the function F (¢, {) satisfy the Lipschitz condition of the form
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|F L0 —F (& ) < L0 [ — &)+ (=)' (30)

in each of the elementary rectangles Q... Since the Green’s function Gg(x, y ;& {) 1s absolutely
integrable over Q for any fixed position of the point (x, ), one can readily obtain an
estimation :

a (*h
lwi (x, ) =w(x, p)| < max {Z,,-diamQ, } J J Gy(x,y; €, 0ddd, €2))
(

0J0

of the error of the cubature formula given in eqn (29).

Notice that the specific form of the analytic representations of Green’s functions
obtained by using the technique proposed by Melnikov (1977a) allows us to evaluate the
integrals in eqn (29) analytically. This significantly enhances the accuracy of the numerical
procedure.

DETERMINATION OF PARAMETERS IN THE ITERATIVE PROCEDURE

As we have already mentioned, obtaining favorable results for the iterative procedure
in eqns (23)—(26) critically depends on selection of appropriate values of the parameter
7,4+ at each stage of the procedure to provide a stable and fast convergence of the iterative
process. Our previous computations showed that in the stationary (t,,, = 1) scheme, the
value of the uniform right-hand term g in eqn (25) for which the process does actually
converge increases as the value of 7, | decreases. However, in this case, the convergence is
hindered. It was also found that if the process diverges, the sequence of the largest differences
of the two successive approximations of the deflection function w(x, y) alternates.

To overcome these difficulties, we propose the following heuristical algorithm for
choosing the sequence of values t,,, of the parameter t for the scheme presented in eqns
(23)—(26). First assume that the kth approximation [w(x, ¥)], of the displacement function
and an associate value of the parameter 7, are already available. We then obtain the next
two approximations of the displacement function by using the scheme in eqns (23)—(26),
with an assumption that 7, ., = 7, ,, = 1,. We now denote

Jicer = WO ) ey = D (X, 0], (32)

where (x*,y*) is the point on the middle plane of the plate at which the kth approximation
of the deflection function achieves its maximum absolute value. If the following condition

At a2 2 % Ay (33)

holds for 0 < « < 1 (where « is the coefficient of condensing in the iterative process), then
the last two approximations are successful and the iteration can proceed. If the left-hand
term of the inequality in eqn (33) is positive, then the value of t for the continuation of the
process may be slightly increased by assuming that ¢, , = 1., 3 = ;" 7. The value of y, > 1
is the coefficient of the step increase in the iterative process. Unless the condition in eqn
(33) holds, the evaluation of the (k+ 1)th and (k+2)th approximations must be restarted
with the assumption that 7, , = 1, ., = u, 1, where u, < 1 is the coefficient of decrease of
the step in the iterative process.
We had concluded earlier that the condition given by

(t1s2) ™" omax g~ | < p+ o max | (34)

with p and o being the given parameters, may be successfully used to terminate the iterative
process in eqns (23)—(26). The left-hand side in the inequality in eqn (34) is the largest
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difference of the two successive approximations of the deflection function. Hence, it does
not depend on the value of the parameter 7, .

To facilitate our computation, optimal values of the parameters 7y, o, y; and pu, have
been determined in advance by a series of numerical experiments. It has been shown, for
instance, that variation in the coefficient of condensing « within the interval 0.1-0.9 does
not influence the convergence at all. The optimal values of the coefficient y; have been
discovered within the interval 1.3-1.4, while those of the parameter u, have been found
within the interval 0.4-0.6. It has also been shown that the optimal values of the parameter
7, belong to the interval 0.005-0.060. Another important detail of the iterative algorithm
in eqns (23)-(26) has been discovered. Namely, it appears that the convergence does not
depend on the initial approximation. Only the rate of the convergence is slightly affected
by the initial approximation.

GENERAL ALGORITHM BASED ON THE GFM

We are now in a position to analyze the geometrically nonlinear bending of the system
of N parallel plates. In doing that, we introduce Sobolev’s spaces H,, = [U}(Q)]* of vector-
functions U, with components u,(x, y), v, (x,y) summable over Q along with their squares
and the first order partial derivatives. We construct a direct product H, = H,,&®
H,,®...®Hy,and defineaset T, = H,:

T, ={U={U,,U,..., Uy} eH,:
C’l‘(umvn) |(X,}’)€r = 05 Cg(u,,,U,,) |(x,y)€l' = 0’ n= ]:' te 9N}s (35)

of kinematically permissible in-plane displacements, including the set of displacements
satisfying the boundary conditions in eqn (3). As is shown by Panagiotopoulos (1985), an
exact solution U, W of the problem under consideration must satisfy variational relations
as written

QW W*=W) > L,(W*=W), VW*eT,, (36)
Q:(U, U*~U) = L,(U*=U), VYU*eT,. 37)

Here

QW W*) = 0, (W, W*)+ i Ehﬂ [(A=vD) "~ {Ou,fox+1/2+ (dw,/0x)

+ v, [00,/8y+ 172 (Ow,/0y)*]} - S wiox? + (1 —vE)~" - (dv,/Cy)
+1/2-(0w,/0y)* +v, - [0u,/0x+1/2+ (Ow,[0x)*)] - 2 wX/dy*
+(1+4v,) ' (Cu, /0y +v,/0x+ow,[éx - Ow,[Oy) * 0w dx Oy] dQ,

N

L, (W*) =L, (W*), QU ,U* = Z JJ [Ou,/0x * Ou}/Ox+ dv,/dy - v}l dy
Q

n=1

+v,* (Ou,/0x* Ov}¥oy+ v, /0y * duXlox)y+1/2- (1 —v,) - (Bu,/dy + Ov,[0X)
N
x (Cu/Oy+ov¥ox)]dQ, Ly(U*) =—Y% Jf [(@ow,/ox - (O*w,/ox* + (1 —v,)
n=1 0
X 0w, /0y?) — (14v,) * 0w, [0y * 0w, [8x0Y) * ¥+ (20w, /8y * (8w, [0y

+(1=v,) 3w, [0x?) — (1 +v,) - 0w, /dx * 0*w,/dx &) - v¥] dQ.

SAS 32-12-J
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To solve the system in eqns (36) and (37), we apply the method of penalty functions
(Lions, 1969). For this purpose, consider a system of variational equations written in the
form

n=1

QZ(W,W*—W)—LZ(W*—W)«i JF,I(W)-(W,T—wn)dﬂz(), VY W*e Tt (38)
Q

O,(U,U*~U)—Ly(U*~U) =0, YU*eT,. (39)

The nonlinear operators F (W), (n = 1,...,N) have been defined earlier in this paper. A
solution U?, W7 of the system above can be considered as an approximate solution for the
system in eqns (36) and (37). The inequalities in eqns (16) and (17) can be used again to
determine the shapes of the contact zones. The convergence of the sequence {U”, W’} to
the exact solution U, W of the problem under consideration has been discussed by Glowinski
et al. (1976). As is shown by Washizu (1982), a solution U?, W7 of the system in eqns (38)
and (39), if one exists, satisfies the system of nonlinear differential equations

D, - VEVAw{ =S (uf, v, wi) = Fy(wip, wh) =0, L(uf,vf)—P(w]) =0, (40)

RviAv: ) —
Drl vV H’,’;-S(U,I;, vaﬂ M’f)—Fn(M’yrf—]? M)rfa 1Vrf+1) - 05

Luf,v/y—Pw)=0, n=2,...,N=1, (41)
Dy V*VPwk—q—S (uf, v} wh) — Fx(wh_1,wR) =0, L (uf,0f)—P(wi) =0 (42)

along with the boundary conditions in eqns (2) and (3).

Thus, an approximate solution of the original problem can be interpreted as a solution
of the nonlinear boundary value problem in eqns (2), (3) and (40)-(42). In obtaining a
numerical solution for this problem, we again take advantage of the non-stationary double-
layered iterative scheme discussed by Samarski and Gulin (1989). In doing this, we consider
components in the displacement vector for each plate as limits of the functional sequences
{uf(x, )}, {vh(x, )}, and {wh(x,»)}, (n = 1,..., N) resulting from the sequence of linear
boundary value problems written as

D\VAVAuAH Y = (1—1,, ) D, V2V2Wh 41, [S (0, 05, wh) + F, (wh, wh)],
Ly ity = (I—100) - L@, o) 1 P(Wh),  (43)

Dnvlv2w,ﬁ+l = (] 'Tk+l)DnV2V2 PV:+T;<+}[S(M£, L’f,, wjr:) +Fn(W¢,1, wﬁ‘ W’i\;+l)]5
L(“I;H,Ufﬂ) = (I _'Tk+1).L(uﬁsvﬁ)+rk+lp(w:)7 (44)

DyVEVEWA = (1 =1, ) DNV VWA + 1 [S (W, v, Wh) + Fuwh 1 wh)],

L™ oh ) = (1=t ) L@, 08) + 1 POWR), n=2,... .N—1, (45)
B’;(“”r:+l) |(,x.y)el" = 07 B;_l(w:+1) l(x.y)el" = 09 n= ]a L >N> (46)
C’l’(u/;;+15vﬁ+l)l(x,y)€['=Ov Cg(uf;+lavs+l)I(x.)')EF=07 n= 17--~7N- (47)

To select an effective sequence 1, of the parameters t in the iterative scheme above, we
utilize the algorithm described earlier. The criterion in eqn (34) has also been used to
terminate the iterative process in eqns (43)~(47).

Let G,.(x,y; &, ¢) represent the Green’s matrix of the Lame’s system for the region Q,
with the boundary conditions of the form in eqn (3) being prescribed along its contour I'.
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Then a solution to the nonhomogeneous Lame’s system L[U (x, y)] = —®(x, y) satisfying
the boundary conditions in eqn (3) is expressible in terms of the integral

Ulx,y) = fj Gox,y;5¢,6) @(&,6) dQ(S, 9).- (48)
Q

Hence, to successfully run each single loop in the iterative process defined by eqns
(43)—(47), it is necessary to accurately compute the proper and improper integrals of the
form

fj K (x.y:4,9) " Ru(8,9) dQ(L, ©), (49)

in addition to those integrals of the form in eqns (27) and (28). The kernel matrices
K, (x,y;¢,¢) in the integral above originate from the effect of the right-hand side operators
in eqns (43)—(47) on the Green’s matrix G, (x, y; &, ¢), while the factor R, (&, ¢) is obtained
by computing integrals of the form in eqn (49). The numerical procedures for approximating
the integrals in eqns (48) and (49) are exactly like those used for the integrals in eqns (27)
and (28). Analytical representations for the Green’s matrices are also constructed by using
the aforementioned technique.

NUMERICAL RESULTS AND DISCUSSION

To illustrate the practical effectiveness of the proposed approach, we first consider the
linear formulation for a simply supported square plate with a uniform thickness 4, occu-
pying the region Q (0 < x < 4,0 < y < a), and situated a distance § above the Winkler
foundation whose coefficient is X. Let the plate be loaded with a uniform transverse pressure
g. In this particular case, the system in eqns (18)—(20) degenerates to a single equation :

DV*Vw—F(w)—q =0, (50)
where
Fw) = —y(w)-(w—05), e=K "%

The iterative procedure in eqns (23)—(26) was applied to this particular example. For
an initial approximation w,, we used the classical solution of the corresponding linear
problem related to the case F(w) = 0 (no geometrical constraints are imposed). The cri-
terion in eqn (22) was applied to terminate the iterative process (with o; = 107'° 4 and
6, = 10~%). Based on our findings, we recommend that the value of the parameter 1, satisfies
1.0 < 7y K < 10.0.

Using the classical linear plate theory, one can easily verify that if a given value of the
uniform transverse loading ¢ does not satisfy the relation

g > &+ D-(0.00406a*)"!, (51)

then the maximum value of the deflection function does not exceed 6. As a result, the plate
does not come into contact with the foundation.
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Fig. 2. Square plate contacting the Winkler foundation, geometrically linear case (SPWFL).
Deflections vs. loading at the center of the plate.
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Fig. 3. SPWFL. Shapes of contact zones for different values of the uniform loading ¢.

Some results from the contact problem specified in eqn (50) are shown in Fig. 2. It
shows deflections w, at the center of the plate as functions of ¢, for different values of the
Winkler coefficient K. Curves 1, 2, 3 and 4 relate to the values K/E equal to 1.25x 1075,
2.5%x107°, 3.75x107° and 5.0 x 10>, respectively. In this formulation, physical and geo-
metrical constants were E = 0.2 x 10 MPa, v =0.3,a = 1m, 4 = 0.01 m, and é = 0.05 A.
In order to evaluate integrals in eqn (29), the region Q was partitioned into M = 10 x 10 of
elementary rectangles. Analyzing the information in Fig. 2, one can particularly conclude
that for values of K/E exceeding 3.75 x 107, the relative rigidity of the elastic foundation
results in practically horizontal shapes of those portions of the g-to-w, graphs which relate
to the values of ga*/Eh* exceeding 5.0.

To determine the shape of the contact zone, the condition in eqn (17) was used. Figure
3 shows the shapes of the contact zones for various values of the uniform loading ¢. Because
of the symmetry in the problem, we exhibit only a quarter of the plate. Figures 4 and 5
show the bending moments M, and M,, respectively, along the line y = a/2. In Figs 3-5,
curves 1, 2, 3, and 4 relate to values of ga*/Eh* equal to 5, 10, 15, and 20, respectively.
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Fig. 4. SPWFL. Distribution of the bending moments M along the midline y = a/2.

3.0

2.0

1.0

0.0

,10 1 ] 1 1
.0 1 2 3 4 x/a

Fig. 5. SPWFL. Distribution of the bending moments M, along the midline y = a/2.

Notice, in particular, that for a relatively low value of the loading ¢ (Fig. 3, curve 1), the
shape of the contact zone is close to a circle, while for the greater values of ¢ its shape is
notably affected by the shape of the plate. Upon analyzing the results shown in Figs 4 and
5, we realize that the influence of the Winkler foundation causes lower levels of stresses in
the central zones of the plates than in the peripheral zones.

To validate the proposed version of the Green’s function method, we now state a
problem that has an analytic solution for comparison to the GFM solution. Within the
scope of the geometrically linear formulation, consider the axisymmetric bending of a
simply supported circular plate of radius a. Its bottom surface is situated a distance é just
above the Winkler foundation with coefficient K (see Fig. 6). The deflections are produced
by the bending moments M, uniformly distributed along the outer edge of the plate such
that the slope of the deflection surface at that edge is equal to m.

Upon providing the notation /* = D/K (Timoshenko and Woinowsky-Krieger, 1959)
and introducing the following dimensionless quantities

x=ril, a=ajl, B=>bll, zy=w/l, z, =wl,

eqn (50) can be reduced to the pair of ordinary differential equations
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Fig. 6. Axisymmetric bending of the circular plate constrained with the Winkler foundation.

(d?/dx?+1/x-d/dx)(d*z,/dx* +1/x-dz,/dx)+2z, =0, 0<x<§p (52)
(A2/dx? +1/x- d/dx)(dza/dx? + 1/x-dz,/dx) =0, f<x <a. (53)

In this formulation, w, = w(r) and w, = w,(r) represent the deflection functions of the

plate over the intervals (0, b) and (b, a), respectively. In this formulation, / represents the

relative rigidity of the foundation. It should be noted that 5 is an unknown parameter.
According to the statement of the problem, the boundary conditions

zy =z, =y, dz;/dx=dz,/dx, d?%z,/dx*+A/x dz,/dx = d’z,/dx? +i/x*dz,/dx,

d/dx (d%z,/dx?*+ 1/x~dz, /dx) = d/dx (d?z,/dx? +1/x - dz,/dx) (54)

are prescribed at x = f as those associated with the continuity of the deflections, slopes,
bending moments, and shearing forces at that point; y = &// is a dimensionless quantity.
At x = o, we have

2, =0, dz/dx=m. (55)

Since the function z; and its derivatives at x = 0 are bounded, we can express the
solutions of eqns (52) and (53) in the form

z(x) = C,ber (x) + C,bei(x), z, = D, +D,x*+D;In(x)+ D,x* In(x), (56)

where ber(x) and bei(x) are Bessel functions introduced by Kelvin (Watson, 1948).

The values of C,, C,, Dy, D,, D5, D, as well as that of parameter 8 (and hence b) can
be determined upon satisfying the boundary conditions in eqns (54) and (55). This results
in a system of seven equations in seven unknowns. The system is nonlinear with respect to
f, but is linear with respect to all the coefficients C; and D,. Eliminating these coefficients
by using equivalent linear transformations results in the transcendental equation

F(p) =0 (57)

It turns out that () is a monotonous function as fe [0, a]. Therefore, a numerical solution
of eqn (57) can be easily computed with a desired level of accuracy by using any available
standard procedure for transcendental equations. This allows one to evaluate afterwards
the coefficients C; and D, in eqn (56) (and, hence, ultimately obtain the deflections w; (r),
w,(r), and, consequently, any other component of the stress—strain state).
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Tables 1 and 2 list some results indicating the degree of accuracy that can be attained
by the GFM approach. Table I, for instance, shows the values b/a of the relative radius of
the contact zone (see Fig. 6) against the values of the slope m, for the following set of initial
data: /= 5.0, 2 =4.0, y= —0.04, and v = 0.3. This table also presents the deflection at
the center of the plate and radial bending moment at its edge. It can be seen that the relative
error for the presented results does not exceed 0.5%. The deflection w and radial bending
moment M,, for the problem determined by / = 10.0, & = 2.5, y = —0.1, m = 0.015, and
v = 0.3, are given in Table 2. It appears that for this formulation, the computed value
of the relative radius b/a of the contact zone is equal to 1.4836.

It should be especially noted that the bending moment M, is computed as accurately
as the deflection. This positive phenomenon is firmly established by the fact that, within
our computation, we absolutely avoid any numerical differentiation. This highlights one of
the significant advantages of our version of the GFM. The presented test helps to validate
the proposed approach.

Several particular examples are presented below to illustrate the numerical capabilities
of the suggested approach as applied to the geometrically nonlinear formulation. The first
of them is another validation example, as the problem considered is a single rectangular
plate {0 < x < 4,0 < y < b} having a uniform thickness 4, and situated a distance J just
above the Winkler foundation whose constant is K. The edges x =0, y = 0, and y = b are
simply supported, while the edge x = a is clamped. The transverse loading is given by
g (x) = g**x/a. In the present formulation, the physical and geometrical parameters are
E=021x10°Mpa,v=03,a=1.5mb=10mAh=05x10"2m,6 =h K=025x10""*
E. Figures 7-10 exhibit some characteristics of the stress—strain state of the plate. On each
of them, curve 1 relates to a value of the transverse loading determined by g* = 0.4 x 10~*
Mpa, while curve 2 relates to g* = 10~2 MPa. Notice that the first of these cases corresponds
with the very beginning of the contact process, while the second case illustrates a latter
stage of the process. Figures 7, 8, and 9 show the deflection w, membrane forces N,, and
bending moments M., respectively, along the midline y = b/2 of the plate. A distribution
of the bending moments M, along the midline x = a/2 is seen in Fig. 10. The geometrical
constraint notably influences the behavior of the plate, causing a common reduction in the
values of all the components of the stress—strain state inside of the contact zone.

For the second example dealing with the geometrically nonlinear formulation, consider
the bending of two closely-spaced parallel square (0 < x < a,0 < ¥ < a) plates whose edges
x =0, a are clamped, while the edges y = 0, a are simply supported. Let the upper plate
undergo a transverse loading ¢ uniformly distributed over the square Q*
(0.4a < x £ 0.6a.0.4a < y < 0.6a). Suppose that the plates have equal thickness /4, and the

Table 1. Circular plate contacting the Winkler foundation. The values b/a, w(0)/h, and M, against the slope m

m 0.010 0.012 0.014 0.016 0.018 0.020
b exact 0.2964 0.4410 0.5502 0.6301 0.6882 0.7310
a GFM 0.2957 0.4402 0.5493 0.6294 0.6874 0.7298
w(0)/h exact 0.1066 0.1142 0.1245 0.1372 0.1515 0.1676
/ GFM 0.1062 0.1137 0.1240 0.1368 0.1511 0.1671
102+ M. () exact 0.0656 0.0920 0.1186 0.1440 0.1681 0.1909
Aa GFM 0.0653 0.0916 0.1181 0.1434 0.1675 0.1902

Table 2. Deflection w(r) and radial bending moment M, (r) of the circular plate contacting the Winkler foundation

rla 0 0.2 0.4 0.6 0.8 1.0
wih exact 0.1306 0.1281 0.1191 0.0991 0.0615 0
/ GFM 0.1317 0.1274 0.1186 0.0987 0.0607 0
exact 0.0247 0.0314 0.0510 0.0820 0.1107 0.1315

2.
10°- M, GFM 0.0261 0.0303 0.0504 0.0816 0.1103 0.1297
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Fig. 7. Rectangular plate contacting the Winkler foundation, geometrically nonlinear case
(RPWFN). Deflections w on the midline y = 5/2 for different loadings.
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Fig. 8. RPWFN. Distribution of the membrane forces N, along the midline y = 5/2.
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Fig. 9. RPWFN. Distribution of the bending moments M, along the midline y = /2.
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Fig. 10. RPWFN. Distribution of the bending moments A, along the midline x = /2.
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Fig. 11. Two parallel rectangular plates, geometrically nonlinear case (TRPN). Loading-to-
deflection dependence at the center of the upper plate.

initial distance between their middle planes is 4. Some numerical results of the solution are
presented in Figs 11-16. In this formulation, the physical and geometrical parameters are
E=021x10°MPa,v=10.3,a=1.0m, 4 =0.5% 102 m. Figure 11 shows the loading-to-
deflection dependence at the center of the upper plate for different values of the initial
distance d. Graphs 1-4 relate to 6 = 1.5 h, 1.75 h, 2.0 h, and 2.25 A, respectively. The
nonlinear nature of those graphs does in fact confirm the validity of the nonlinear for-
mulation of the problem for the given loading. Figures 12-14 depict some characteristics
of the stress—strain state in the upper plate, while Figs 15 and 16 depict those in the lower
plate for 6 = 1.75 h. Graphs 1, 2 and 3 relate to values of the loading ¢ equal to 0.44 MPa,
0.32 MPa, and 0.24 MPa, respectively. Notice that the bending moments in the upper plate
are 30-40% higher than those in the lower plate, although their characteristics are identical.
It is also important to notice that, similar to the previous problem, the ratios of maximal
values of the in-plane displacements to the deflections for both plates do not exceed
107°—107°. These results corroborate the application of linearized contact conditions of
the form in eqn (4).
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Fig. 12. TRPN. Deflections of the upper plate for different loadings.
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Fig. 13. TRPN. Distribution of the membrane forces N, for the upper plate.
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Fig. 14. TRPN. Distribution of the bending moments M, for the upper plate.
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Fig. 15. TRPN. Distribution of the bending moments M, for the lower plate.
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Fig. 16. TRPN. Distribution of the bending moments M, for the lower plate.

The last example in this paper again involves two parallel, simply supported rectangular
plates occupying a region Q (0 < x < a,0 < y < b). The upper plate is undergoing a uni-
formly distributed transverse loading ¢, causing the lower plate to contact an elastic
foundation whose Winkler coefficient is K. The thicknesses of both the plates are 4, the
initial distance between their middle planes is d, = 1.1 %, and the initial distance between
the bottom surface of the lower plate and the foundation is 6, = 0.5 4. The physical and
geometrical parameters are £=021x10° MPa, v=03, ¢=20 m, =10 m,
h=05x10"?m, K =0.21x 107 E. Figure 17 depicts shapes of the contact zones for the
plates. The shapes of the contact zones for the lower plate and the foundation are seen in
Fig. 18. In both figures, curve 1 relates to the value of the loading g = 1072 MPa; curve 2
to g = 0.3x 1072 MPa.

For the approximations of the integrals in eqns (27), (28), (48) and (49), we partitioned
the region Q into 10 x 10 elementary rectangles. In applying the penalty function method,
the value e7> = 0.5 x 1073 E of the penalty coefficient had been determined by numerical
experiment.

CONCLUDING REMARKS

The complexities of the boundary value problems in this study arise from the sim-
ultaneous appearance of two different types of nonlinearities. The first is the geometrical
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Fig. 17. Two plates above the Winkler foundation, geometrically nonlinear case (TPWEFN). Contact
zones lor the upper and lower plates.
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Fig. 18. TPWFN. Contact zones for the lower plate and foundation.

nonlinearity originating from a relatively large level of deflections of the plates. The other
results from the fact that the contact zones of neighboring plates are not fixed in advance;
thus, the solution process must determine their shapes along with other unknowns. An
iterative process which can effectively account for both of these nonlinearities must maintain
exceptional accuracy when solving the linear problem within each loop. It is evident that
the version of the Green’s function method presented in this paper does provide the required
level of accuracy.
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